SYNTHESIS OF MYCAROSE AND EPI-AXENOSE FROM NON-CARBO-HYDRATE PRECURSORS*

WILLIAM R. ROUSH** AND SUSANNAH M. HAGADORN

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (U.S.A.)

(Received April 25th, 1984; accepted for publication, October 11th, 1984)

ABSTRACT

A six-step synthesis of racemic mycarose from allylacetylene is described. Key transformations include the *threo*-selective epoxidation of (*E*)-4-methyl-1,4-heptadien-6-ol and the α -opening of *xylo*-4,5-epoxy-4-methylhept-1-en-6-ol (**7**), which was accomplished *via* a neighboring group-assisted reaction of *xylo*-4,5-epoxy-4-methyl-6-(*N*-phenylcarbamoyloxy)hept-1-ene (**12**). The latter conversion proceeded with lower selectivity (3:1) than observed with disubstituted epoxyurethanes because of the greater tendency of trisubstituted epoxides to undergo substitutions with S_N1 character at the tertiary center. Methanolysis of *ribo*-4-methylhept-1-ene-4,5,6-triol 5,6-carbonate, obtained from **12** in up to 61% yield, afforded *ribo*-4-methylhept-1-ene-4,5,6-triol, which was converted into mycarose by ozonolysis. Similarly, ozonolysis of *lyxo*-4-methylhept-1-ene-4,5,6-triol, which was prepared (64%) by hydrolysis of **7**, afforded racemic 3-epi-axenose.

INTRODUCTION

The synthesis of carbohydrates and polyhydroxylated compounds from non-carbohydrate precursors is a topic of considerable current interest^{1,2}. Among other reasons, simple monosaccharides are ideal targets for demonstrating new strategies for control of stereochemistry in acyclic systems. We recently described² methodology for selective α -opening of epoxy alcohols (1) via neighboring group-assisted reactions of the derived phenylurethanes (e.g., 2 \rightarrow 3). Complementary regioselectivity was accomplished by hydrolysis of the epoxyalcohol substrates with aqueous acid (e.g., 1 \rightarrow 4). By use of these procedures, short, highly stereoselective syntheses were accomplished of all four isomers of 2,6-dideoxyhexose (the arabino, lyxo, and ribo isomers were prepared enantioselectively)³. We now describe extensions of this methodology towards the synthesis of 2,6-dideoxy-3-C-methyl-ribo-hexose (5, mycarose)⁴ and 2,6-dideoxy-3-C-methyl-lyxo-hexose (6, 3-epi-axenose)⁵ via the epoxyalcohol 7.

^{*}Total Synthesis of Carbohydrates, Part 4.

^{**}Roger and Georges Firmenich Career Development Associate Professor of Natural Products Chemistry, 1981–1984; Fellow of the Alfred P. Sloan Foundation, 1982–84.

RESULTS AND DISCUSSION

The key intermediate 7 was synthesized starting from allylacetylene (8). Thus, treatment of 8 with 2 equiv. of trimethylaluminum in dichloromethane in the presence of 0.25 equiv. of bis(cyclopentadienyl)zirconium dichloride ($0^{\circ}\rightarrow25^{\circ}$, 24 h) followed by 3 equiv. of acetaldehyde afforded⁶ the allylic alcohol 9, which was epoxidized⁷ by using titanium(IV) isopropoxide and *tert*-butylhydroperoxide in dichloromethane at -20° . The latter procedure is highly *threo*-selective (>19:1) and afforded 7 in good yield (84% from 8).

Completion of a synthesis of mycarose from 7 required that a selective α -opening of the epoxide be accomplished, whereas a β -opening of 7 would lead to the *lyxo*-triol precursor to 6. The latter conversion was readily accomplished by exposure of 7 to 0.1M sulfuric acid in aqueous tetrahydrofuran (1:4) at 45° for 38 h. In this manner, 64% of the *lyxo*-triol 11 was obtained uncontaminated by the *ribo*-isomer 10, and also 11% of *threo*-4-methyl-1,3-heptadiene-5,6-diol. The conversion of 7 into 10, however, was less straightforward. The phenylurethane 12 was prepared (72%) from 7 by the usual procedure (phenyl isocyanate, pyridine, 25°). Treatment of 12 with various Lewis acids under aprotic conditions (see Table I) afforded a mixture of (at least) three carbonates 13–15 which were not isolated in preliminary experiments. Such mixtures were hydrolyzed (methanolic 0.2M sodium methoxide, 23–60°) to give a mixture of triols 10 and 11, the ratio of which was

TABLE I
REACTIONS OF URETHANE 12 WITH LEWIS ACIDS

Entry	Conditions ^a	Productsh,c (%)	
		10 + 11 (ratio)	16 ^d
1	Diethylaluminum chloride (3-6 equiv.), dimethoxyethane, 20 h	53 (3:1)	
2	Diethylaluminum chloride (3 equiv.), ether, 20 h	62 (2:1)	
3	Diethylaluminum chloride (4.5 equiv.), tetrahydrofuran, 24 he	23 (1:10)	-
4	Diethylaluminum chloride (3 equiv.), toluene, 8 h	33 (1:1.5)	
5	Diethylaluminum chloride (3 equiv.), dichloromethane, 4 h		f
6	Boron trifluoride etherate (3 equiv.), ether, 5 h	62 (1:2)	-
7	Boron trifluoride etherate (3 equiv.), dichloromethane, 2 h	52 (1:5)	*****
8	Stannic chloride (3 equiv.), dichloromethane, 2 h	35 (1:2)	35
9	Trimethylaluminum (1.2 equiv.), ether, 16 hg	35 (1:1)	

^aWith the exception of entry 3, all epoxide openings were performed at -20° . Work-up involved mild treatment with acid to hydrolyze the intermediate imino carbonates. The mixture of carbonates so produced was then treated with sodium methoxide in methanol, as described in the Experimental. ^bYields are for isolated products. The ratio was determined by n.m.r. spectroscopy before chromatography of the mixture. ^dCompound 16 is threo-4-methyl-2-(N-phenylcarbamoyloxy)-4,6-heptadien-3-ol, produced by an elimination reaction. ^eWarmed from -20° to 25° . ^fDiene 16 was obtained in near quantitative yield. ^gUrethane 12 (59%) was recovered before the NaOMe step.

determined by high-field n.m.r. spectroscopy. The greatest selectivity for α -opening was obtained by using diethylaluminum chloride in dimethoxyethane at -20° in the epoxide-opening step, leading to a 3:1 mixture of 10 and 11 after deacylation. Under all other conditions examined, greater amounts of intramolecular addition of the urethane carbonyl group to the β -position of 12, leading ultimately to 11 via γ -carbonate 14 and its acyl-transfer isomer 15, or elimination to diene 16, were observed. The magnitude of the problem of intramolecular β -epoxide opening, which was encountered to only a limited extent in studies of disubstituted epoxyurethanes², reflects the greater tendency of trisubstituted epoxides to undergo substitutions with S_N1 character at the tertiary center.

For preparative scale work, it proved most convenient to purify 13 (yield up to 61%) from the reaction specified in entry 1 of Table I (mixtures of triols 10 and 11 could be fractionated only with difficulty). Transesterification of 13, according to the procedure described above, provided 90–95% of triol 10, ozonolysis of which (ozone-methanol, -20° ; then dimethyl sulfide at 25°) gave 92% of racemic mycarose (5). Similarly, 3-epi-axenose was prepared (89%) from lyxo-triol 11. The structures of these sugars were confirmed by conversion into the corresponding methyl pyranosides (methanol, acetyl chloride, 23°) (an α,β -mixture was obtained from which the α anomer was separated by chromatography). The spectroscopic properties of methyl α -mycaroside were identical to literature data^{4b}, and those of methyl α -a-epi-axenopyranoside were identical to those of an authentic sample⁵.

EXPERIMENTAL

General. — ¹H-N.m.r. spectra were recorded with a Bruker 250-MHz instrument for solutions in CDCl₃ (internal CHCl₃, δ 7.24). I.r. spectra were recorded with a Perkin–Elmer Model 283B spectrophotometer and were calibrated with the 1601 cm⁻¹ absorption of polystyrene. Mass spectra were measured at 70 eV on a Finnegan MAT 8200 instrument. Elemental analyses were performed by Robertson Laboratories (Florham Park, NJ). Melting points were recorded on a Fisher–Johns hot-stage melting-point apparatus and are uncorrected.

All reactions were conducted in oven-dried (120°) glassware under dry nitrogen. All solvents were purified before use according to the procedures previously described². Preparative t.l.c. was performed on 0.5- and 2-mm layers of silica gel (Analtech). Column chromatography was performed on silica gel (activity I, Woelm). All chromatography solvents were distilled prior to use.

xylo-4,5-Epoxy-4-methylhept-1-en-6-ol (7). — To a stirred solution of biscyclopentadienylzirconium dichloride (1.2 g, 4.8 mmol) and trimethylaluminum (34 mmol, 2M in toluene) in CH₂Cl₂ (50 mL) at -15° was added a solution of allylacetylene (1.0 g, 15 mmol) in CH₂Cl₂ (5 mL). The solution was stirred at 23° under argon for 24 h and then cooled to -12° . A solution of freshly distilled acetaldehyde (2.4 g, 53 mmol) in CH₂Cl₂ (8 mL) was added dropwise. The resulting straw-colored mixture was stirred at 23° for 3 h, then cooled to -10° , and quenched with saturated aqueous K₂CO₃ (5 mL, exothermic reaction). This mixture was stirred for 2 h until the evolution of gas ceased. The resulting fine white suspension was filtered through a Celite pad, and the solid residue was washed with CH₂Cl₂ (total, 150 mL). The combined filtrate and washings were extracted with saturated aqueous NaCl and dried (MgSO₄). The allylic alcohol 9 is somewhat volatile, and consequently the crude product was used directly in the next step. Pure 9 had $\nu_{\rm max}$ 3350, 3080, 1640, and 1050 cm⁻¹. ¹H-N.m.r. data: δ 1.21 (d, 3 H, $J_{6.7}$ 6 Hz, H-7), $1.64 (d, 3 H, J_{8.5} 1 Hz, H-8), 2.69 (d, 2 H, J_{7.3} 6 Hz, H-3), 4.55 (m, 1 H, H-6), 5.03$ (m, 2 H, H-1), 5.22 (m, 1 H, H-5), 5.75 (m, 1 H, H-2).

Anal. Calc. for C₈H₁₄O: C, 76.14; H, 11.18. Found: C, 76.14; H, 11.47.

Methylene chloride (~30 mL) was distilled from a solution of crude **9**. The residue was cooled to -20° and treated with Ti(OiPr)₄ (3.4 g, 12 mmol) and tertbutyl hydroperoxide (15 mmol, 5.05 m in CH₂Cl₂). The solution was stored at -20° for 20 h, and ether (80 mL) and saturated aqueous Na₂SO₄ (5 mL) were then added. The mixture was stirred vigorously at room temperature for 1 h, filtered through Celite, dried (MgSO₄), and concentrated *in vacuo* without heating. The resulting yellow oil (2.2 g) was distilled twice (b.p. 110–115°/30 mmHg) to give **7** (1.8 g, 84%), which was at least 95% isomerically pure; ν_{max} 3420, 3080, 1640, and 1060 cm⁻¹. ¹H-N.m.r. data: δ 1.22 (d, 3 H, $J_{1,2}$ 7 Hz, H-7), 1.28 (s, 3 H, H-8), 2.27 (m, 2 H, H-3), 2.63 (s, 1 H, OH), 2.75 (d, 1 H, $J_{2,3}$ 8 Hz, H-5), 3.65 (m, 1 H, H-6), 5.08 (m, 2 H, H-1), 5.73 (m, 1 H, H-2). Mass spectrum: m/z 123, 109.

Anal. Calc. for C₈H₁₄O₂: C, 67.58; H, 9.92. Found: C, 67.36; H, 10.04.

xylo-4,5-Epoxy-4-methyl-6-(N-phenylcarbamoyloxy)hept-1-ene (12). — A mixture of 7 (1.0 g, 7.0 mmol), phenyl isocyanate (5.0 g, 35 mmol), and pyridine (5 mL) in CH₂Cl₂ (50 mL) was stirred for 18 h at 23°. The solvent was then removed in vacuo and the residue treated with aqueous 10% acetone (50 mL) for 1.5 h. The resulting white solid was collected and triturated with CH₂Cl₂. Evaporation of the solvents gave a yellow oil which was purified by flash column chromatography (9:1 hexane-ether) on silica gel (50 g) to give isomerically pure 12 (1.3 g, 72%). On a smaller scale (150 mg of 7), 12 containing 5% of erythro-epoxide isomer was obtained in 95% yield; $\nu_{\text{max}}^{\text{CH}_2\text{Cl}_2}$ 3420, 1740, 1510, and 1215 cm⁻¹. ¹H-N.m.r. data: δ 1.32 (d, 3 H, $J_{6,7}$ 7 Hz, H-7), 1.33 (s, 3 H, H-8), 2.30 (m, 2 H, H-3), 2.88 (d, 1 H, $J_{5,6}$ 8 Hz, H-5), 4.73 (m, 1 H, H-6), 5.11 (m, 2 H, H-1), 5.74 (m, 1 H, H-2), 6.79 (s, 1 H, NH), 7.0-7.4 (m, Ph). Mass spectrum: m/z 262 (M⁺ + 1), 261 (M⁺), 125.

Anal. Calc. for $C_{15}H_{19}NO_3$: C, 68.94; H, 7.34; N, 5.36. Found: C, 69.21; H, 7.66; N, 5.65.

lyxo-4-Methylhept-1-ene-4,5,6-triol (11). — Compound 7 (54 mg, 0.39 mmol) was treated for 38 h at 45° with tetrahydrofuran–0.1M H_2SO_4 (4:1, 5 mL). The mixture was filtered through Dowex 1-X8 (Na⁺) resin and concentrated. The resulting yellow oil was purified by preparative t.l.c. (4:1 ether–hexane) to give 11 (39 mg, 64%); ν_{max} 3490, 3025, and 1040 cm⁻¹; and threo-4-methyl-1,3-heptadiene-5,6-diol (6 mg, 11%). ¹H-N.m.r. data: δ 1.24 (m, 6 H, H-7,8), 2.34 (m, 2 H, H-3), 2.9–3.2 (m, 4 H, H-5 and HO-2,3,4), 4.21 (q, 1 H, $J_{5,6} = J_{6,7} = 8$ Hz, H-6), 5.09 (m, 2 H, H-7), 5.78 (m, 1 H, H-6). Mass spectrum: m/z 125, 119.

Anal. Calc. for $C_8H_{16}O_3$: C, 59.98; H, 10.07. Found: C, 59.64; H, 10.11.

ribo-4-Methylhept-1-ene-4,5,6-triol 5,6-carbonate (13). — A solution of 12 (148 mg, 0.57 mmol) in dimethoxyethane (17 mL) was treated with Et₂AlCl (3.2 equiv., M in hexane) at -50° . The mixture was stored at -20° and more Et₂AlCl (2.5 equiv.) was added after 4 h. After a total of 18 h at -20° , 0.5M HCl (4 mL) was added dropwise, and the mixture was stirred at 23° for 2 h and then extracted with CH₂Cl₂ (4 × 10 mL). The combined extracts were washed with saturated aqueous NaCl-NaHCO₃, dried over K₂CO₃, filtered, and concentrated *in vacuo*. The crude product contained four carbonates: R_F 0.63 (ether), 13 and 15 (ν_{max} 1800 cm⁻¹; methanolysis of 15 afforded 11); R_F 0.54 (minor), presumed to be *lyxo*-4-methylhept-1-ene-4,5,6-triol 4,5-carbonate (ν_{max} 1800 cm⁻¹); and R_F 0.35, identified as 14 (ν_{max} 1745 cm⁻¹) by hydrolysis to 11. Chromatography (hexane-ether) of the crude product over silica gel (20 g) afforded a 20:1 mixture (65 mg, 61%) of 13 and 15. In other runs, however, the ratio was ~10:1.

A mixture of **13** and **15** (167 mg) was chromatographed on a Harrison Research Chromatotron apparatus, using a rotor coated with a 2-mm layer of Merck PF 254 CaSO₄ · 0.5 H₂O silica gel and eluted with methanol-benzene (1.5:98.5). After one recycle of mixed fractions, **13** (108 mg, 65%; ν_{max} 3450, 3060, 2980, and 1800 cm⁻¹), **15** (4 mg), and mixed fractions enriched in **15** (21 mg) were obtained. ¹H-N.m.r. data: δ 1.35 (s, 3 H, CMe), 1.60 (d, 3 H, H-7), 2.0 (s, 1 H, OH), 2.34 (m, 2 H, H-3), 4.75 (d, 1 H, H-5), 4.88 (m, 1 H, H-6), 5.20 (m, 2 H, H-1), 5.81 (m, 1 H, H-2).

Anal. Calc. for C₀H₁₄O₄: C, 58.05; H, 7.58. Found: C, 57.90; H, 7.56.

ribo-4-Methylhept-1-ene-4,5,6-triol (10). — Carbonate 13 (178 mg, 1.05 mmol) was treated with methanolic 0.18M NaOMe (15 mL) at 23° or 60° for 13 h. The mixture was then filtered through Dowex 50W-X8 (H⁺) resin, which had been pretreated with MeOH, and concentrated in vacuo to give 10 (137 mg, 90%); ν_{max} 3350, 3080, and 1040 cm⁻¹; which was pure enough for subsequent transformations. ¹H-N.m.r. data: δ 1.24 (s, 3 H, H-8), 1.28 (d, 3 H, $J_{6,7}$ 6.1 Hz, H-7), 2.08 (d, 1 H, $J_{5,\text{OH}}$ 5.5 Hz, HO-5), 2.32 (m, 2 H, H-3), 2.87 (s, 1 H, HO-4), 3.03 (d, 1 H, $J_{6,\text{OH}}$ 1.7 Hz, HO-6), 3.27 (dd, 1 H, $J_{5,6}$ 7.5, $J_{5,\text{OH}}$ 5.6 Hz, H-5), 3.93 (m, 1 H, H-6), 5.19 (m, 2 H, H-1), 5.94 (m, 1 H, H-2). Mass spectrum: m/z 119 (M⁺ - C₃H₅), 85.

Anal. Calc. for C₈H₁₆O₃: C, 59.98; H, 10.07. Found: C, 59.96; H, 9.91.

2,6-Dideoxy-3-C-methyl-ribo-hexose (5, mycarose). — A solution of 10 (43 mg, 0.30 mmol) in methanol (10 mL) at -20° was treated with a stream of O₃ in O₂ for 2 min and then purged with O₂, and excess of dimethyl sulfide was added at -20° . This mixture was stirred at room temperature for 24 h, and then concentrated in vacuo. Preparative t.l.c. (5:95 MeOH-CH₂Cl₂) of the crude product gave 5 (44 mg, 92%, >80% α-pyranose); $\nu_{\text{max}}^{\text{CHCl}_1}$ 3450, 2925, 1120, 1050, and 1010 cm⁻¹. ¹H-N.m.r. data: δ 1.25 (s. 3 H, CMe), 1.30 (d, 3 H, $J_{6,7}$ 6 Hz, CH-Me), 1.76 (dd, 1 H, $J_{2a,2e}$ 14.5, $J_{1,2}$ 3.7 Hz, H-2), 2.05 (dd, 1 H, $J_{1,2}$ 0.9, $J_{2a,2e}$ 14.5 Hz, H-2), 3.03 (dd, 1 H, $J_{4,5} = J_{4,\text{OH}} = 9$ Hz, H-4), 3.18 (d, 1 H, $J_{1,\text{OH}}$ 9.6 Hz, HO-1), 3.38 (s, 1 H, COH), 3.90 (m, 1 H, H-5), 4.18 (d, 1 H, $J_{4,\text{OH}}$ 6.6 Hz, HO-4), 5.20 (dd, $J_{1,2}$ 3.7, $J_{1,2}$ 1 Hz, H-1).

Methyl 2,6-dideoxy-3-C-methyl-α-ribo-hexopyranoside. — Triol 10 (133 mg, 0.83 mmol) was ozonized by the procedure described above to give mycarose. A solution of the crude product in methanolic 0.05M acetyl chloride (5 mL) was stirred for 1 h at 23°, filtered through Dowex 1-X8 (Na⁺) resin (20 g) using methanol (100 mL), and concentrated. The crude product was purified by flash column chromatography (2:98 MeOH–CH₂Cl₂) on silica gel (20 g) to give the β-pyranoside (69 mg, 47%), $R_{\rm F}$ 0.25; $\nu_{\rm max}$ 3450, 2960, 2850, 1160, and 1080 cm⁻¹; (the α-pyranoside, $R_{\rm F}$ 0.50, was lost due to volatility under high vacuum). ¹H-N.m.r. data: δ 1.27 (s, 3 H, CMe), 1.30 (d, 3 H, $J_{5,6}$ 6.1 Hz, H-6), 1.55 (dd, 1 H, $J_{1,2a}$ 9.6, $J_{2a,2e}$ 13.6 Hz, H-2a), 1.92 (bs, 2 H, HO-3,4), 1.98 (dd, 1 H, $J_{1,2e}$ 1.9, $J_{2a,2e}$ 13.9 Hz, H-2e), 3.04 (bd, 1 H, $J_{4,5}$ 9 Hz, H-4), 3.46 (s, 3 H, OMe), 3.59 (dq, 1 H, $J_{5,6}$ 6.2, $J_{4,5}$ 9.4 Hz, H-5), 4.76 (dd, 1 H, $J_{1,2a}$ 9.7, $J_{1,2e}$ 1.9 Hz, H-1).

A solution of the β -pyranoside (69 mg, 0.39 mmol) in methanolic 0.05M acetyl chloride (5 mL) was allowed to equilibrate for 2.5 h and then worked-up and chromatographed as described above, to give the β -pyranoside (40 mg) and the α -pyranoside (16 mg, care being taken to avoid sublimation); $\nu_{\rm max}$ 3490, 2940, 2840, 1160, 1130, and 1050 cm⁻¹. The n.m.r. spectrum of methyl α -mycaroside was identical to that previously published^{4b}. ¹H-N.m.r. data: δ 1.27 (s, 3 H, CMe), 1.30 (d, 3 H, $J_{5.6}$ 9 Hz, CHMe), 1.80 (dd, 1 H, $J_{2a,2e}$ 15.3, $J_{1.2}$ 4.4 Hz, H-2), 2.03 (dd, 1 H, $J_{2a,2e}$ 15.3, $J_{1.2}$ 1 Hz, H-2), 2.96 (dd, 1 H, $J_{4,\rm OH}$ = $J_{4.5}$ = 10.9 Hz, H-4), 3.36 (s, 3 H, OMe), 3.59 (m, 1 H, H-5), 4.75 (d, 1 H, $J_{1.2}$ 4.0 Hz, H-1).

2,6-Dideoxy-3-C-methyl-lyxo-hexose (6, 3-epi-axenose) and methyl 2,6-dideoxy-3-C-methyl-α-lyxo-hexopyranoside. — Triol 11 (14 mg, 0.09 mmol) was ozonized by the procedure described above, to give α,β -6 (89% after chromatography, ~70% of β anomer); ν_{max} 3350, 2980, 2940, 1100, 1060, and 1010 cm⁻¹. ¹H-N.m.r. data δ 1.20–1.33 (m, 6 H, 2 CHMe), 1.8 (m, 2 H, H-2), 3.13 and 3.23 (2 s, 1 H, H-4), 3.71 and 4.25 (2 q, 1 H, $J_{5,6}$ 6.7 Hz, H-5), 3.71–4.25 (b, 3 OH), 4.73 (dd, $J_{1a,2a}$ 10, $J_{1a,2e}$ 2 Hz, H-1β), and 5.34 (d, $J_{1e,2}$ 3.3 Hz, H-1α).

Crude 6 from a separate experiment (45 mg of 11) was treated with methanolic 0.05M acetyl chloride for 12 h at room temperature. The mixture was filtered through a short column of Dowex 1-X8 (Na⁺) resin, the column was washed with methanol, and the eluate was concentrated *in vacuo*. Preparative t.1.c. (1:99 MeOH-CH₂Cl₂, six developments) of the crude product gave an α,β -mixture (29 mg, 59%) of methyl glycosides (R_F 0.4 for α and 0.35 for β) and uncharacterized minor products (8 mg). Repeated chromatography of the major fraction in the same solvent system gave pure α anomer (identical with a sample provided by Garegg and Norberg⁵); $\nu_{\text{max}}^{\text{CHCl}_3}$ 3550, 3450, 2940, 2840, 1125, and 1040 cm⁻¹. ¹H-N.m.r. data: δ 1.26 (d, 3 H, $J_{5,6}$ 6.5 Hz, CHMe), 1.37 (s, 3 H, CMe), 1.72–1.87 (m, 2 H, H-2), 2.17 (d, 1 H, $J_{H,OH}$ 7.6 Hz, OH), 2.59 (s, 1 H, COH), 3.18 (d, 1 H, $J_{4,OH}$ 7.0 Hz, H-4), 3.30 (s, 3 H, OMe), 4.0 (q, 1 H, $J_{5,6}$ 6.5 Hz, H-5), 4.72 (d, 1 H, $J_{1,2}$ 4 Hz, H-1). Mass spectrum: m/z 145 (M⁺ – OMe), 127, 101.

ACKNOWLEDGMENTS

This research was supported by a grant from the National Cancer Institute (CA-29847) and the Alfred P. Sloan Foundation. We thank Dr. P. Garegg for a sample of methyl α -3-epi-axenopyranoside.

REFERENCES

- 1 (a) A. ZAMOJSKI, A. BANASZEK, AND G. GRYNKIEWICZ, Adv. Carbohydr. Chem. Biochem., 40 (1982) 1-129; (b) G. J. McGarvey, M. Kimura, T. Oh. and J. M. Williams, J. Carbohydr. Chem., 3 (1984) 125-188.
- 2 W. R. ROUSH, R. J. BROWN, AND M. DIMARE, J. Org. Chem., 48 (1983) 5083-5093.
- 3 W. R. ROUSH AND R. J. BROWN, J. Org. Chem., 48 (1983) 5093-5101.
- (a) G. Fronza, C. Fuganti, P. Grasselli, G. Pedrocchi-Fantoni, and C. Zirotti, Tetrahedron Lett., 23 (1982) 4143-4146; (b) J. Thiem and J. Elvers, Chem. Ber., 111 (1978) 3514-3515; (c) C. Fuganti and P. Grasselli, J. Chem. Soc. Chem. Commun., (1978) 299-300; (d) B. Flaherty, W. G. Overend, and N. R. Williams, J. Chem. Soc., C, (1966) 398-403; (e) H. Grisebach, W. Hofheinz, and N. Doerr, Chem. Ber., 96 (1963) 1823-1826; (f) F. Korte, U. Claussen, and K. Göhring, Tetrahedron, 18 (1962) 1257-1264; (g) D. M. Lemal, P. D. Pacht, and R. B. Woodward, ibid., 18 (1962) 1275-1293.
- 5 P. J. GAREGG AND T. NORBERG, Acta Chem. Scand., Ser. B, 29 (1975) 507-512.
- 6 (a) C. L. RAND, D. E. VAN HORN, M. W. MOORE, AND E. NEGISHI, J. Org. Chem., 46 (1981) 4093–4096; (b) E. NEGISHI, Pure Appl. Chem., 53 (1981) 2333–2356.
- 7 V. S. MARTIN, S. S. WOODARD, T. KATSUKI, Y. YAMADA, M. IKEDA, AND K. B. SHARPLESS, J. Am. Chem. Soc., 103 (1981) 6237-6240.